研究ノート > Multibody Dynamics


※上記の広告は60日以上更新のないWIKIに表示されています。更新することで広告が下部へ移動します。

Equation of Motion

 [a][\ddot{x}] + [b][\dot{x}] + [c][\dot{x}] = [f]
Let  \dot{x} = \dot{x}_0 + \ddot{x}t
 [a][\ddot{x}] + ( [b] + [c] ) ( \dot{x}_0 + \ddot{x}t ) = [f]
 \left( [a] + t([b] + [c]) \right) \ddot{x} = [f] - ([b] + [c]) \dot{x}_0

Derivative of Equation of Motion

Let  [E] = [a] + t([b] + [c])
Then Derivative of Equation of Motion:  [E] \frac{d\ddot{x}}{dt}

Ex.
Let  \theta = \frac{d\ddot{x}}{dt} = \frac{\ddot{x} - \ddot{x}_0}{t}

 \begin{bmatrix} E_{11} && E_{12} \\ E_{21} && E_{22} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} E_{11}\theta_1 + E_{12}\theta_2 \\ E_{21}\theta_1 + E_{22}\theta_2 \end{bmatrix}

 E_{11}\theta_1 = \begin{bmatrix} e_{00} && e_{01} && e_{02} \\ e_{10} && e_{11} && e_{12} \\ e_{20} && e_{21} && e_{22} \end{bmatrix} \begin{bmatrix} \theta_{1x} \\ \theta_{1y} \\ \theta_{1z} \end{bmatrix} = \begin{bmatrix} e_{00}\theta_{1x} + e_{01}\theta_{1y} + e_{02}\theta_{1z} \\ \vdots \\ \vdots \end{bmatrix}

Force

Forces exerted on a system by bodies external to the system and forces exerted between bodies of the system are called "active" (or "applied") forces.
Forces exerted on the system due to accelerations of its particles are called "inertia" (or "passive") forces.
|新しいページ|検索|ページ一覧|RSS|@ウィキご利用ガイド | 管理者にお問合せ
|ログイン|

更新履歴

取得中です。