「研究ノート/Multibody Dynamics」の編集履歴(バックアップ)一覧はこちら

研究ノート/Multibody Dynamics」(2008/08/07 (木) 00:02:50) の最新版変更点

追加された行は緑色になります。

削除された行は赤色になります。

*Equation of Motion $$ [a][\ddot{x}] + [b][\dot{x}] + [c][\dot{x}] = [f] $$ Let $$ \dot{x} = \dot{x}_0 + \ddot{x}t $$ $$ [a][\ddot{x}] + ( [b] + [c] ) ( \dot{x}_0 + \ddot{x}t ) = [f] $$ $$ \left( [a] + t([b] + [c]) \right) \ddot{x} = [f] - ([b] + [c]) \dot{x}_0 $$ ***Derivative of Equation of Motion Let $$ [E] = [a] + t([b] + [c]) $$ Then Derivative of Equation of Motion: $$ [E] \frac{d\ddot{x}}{dt} $$ Ex. Let $$ \theta = \frac{d\ddot{x}}{dt} = \frac{\ddot{x} - \ddot{x}_0}{t} $$ $$ \begin{bmatrix} E_{11} && E_{12} \\ E_{21} && E_{22} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} E_{11}\theta_1 + E_{12}\theta_2 \\ E_{21}\theta_1 + E_{22}\theta_2 \end{bmatrix} $$ $$ E_{11}\theta_1 = \begin{bmatrix} e_{00} && e_{01} && e_{02} \\ e_{10} && e_{11} && e_{12} \\ e_{20} && e_{21} && e_{22} \end{bmatrix} \begin{bmatrix} \theta_{1x} \\ \theta_{1y} \\ \theta_{1z} \end{bmatrix} = \begin{bmatrix} e_{00}\theta_{1x} + e_{01}\theta_{1y} + e_{02}\theta_{1z} \\ \vdots \\ \vdots \end{bmatrix} $$ *Force Forces exerted on a system by bodies external to the system and forces exerted between bodies of the system are called "active" (or "applied") forces. Forces exerted on the system due to accelerations of its particles are called "inertia" (or "passive") forces.
*Equation of Motion $$ [a][\ddot{x}] + [b][\dot{x}] + [c][\dot{x}] = [f] $$ Let $$ \dot{x} = \dot{x}_0 + \ddot{x}t $$ $$ [a][\ddot{x}] + ( [b] + [c] ) ( \dot{x}_0 + \ddot{x}t ) = [f] $$ $$ \left( [a] + t([b] + [c]) \right) \ddot{x} = [f] - ([b] + [c]) \dot{x}_0 $$ ***Derivative of Equation of Motion Let $$ [E] = [a] + t([b] + [c]) $$ Then Derivative of Equation of Motion: $$ [E] \frac{d\ddot{x}}{dt} $$ Ex. Let $$ \theta = \frac{d\ddot{x}}{dt} = \frac{\ddot{x} - \ddot{x}_0}{t} $$ $$ \begin{bmatrix} E_{11} && E_{12} \\ E_{21} && E_{22} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} E_{11}\theta_1 + E_{12}\theta_2 \\ E_{21}\theta_1 + E_{22}\theta_2 \end{bmatrix} $$ $$ E_{11}\theta_1 = \begin{bmatrix} e_{00} && e_{01} && e_{02} \\ e_{10} && e_{11} && e_{12} \\ e_{20} && e_{21} && e_{22} \end{bmatrix} \begin{bmatrix} \theta_{1x} \\ \theta_{1y} \\ \theta_{1z} \end{bmatrix} = \begin{bmatrix} e_{00}\theta_{1x} + e_{01}\theta_{1y} + e_{02}\theta_{1z} \\ \vdots \\ \vdots \end{bmatrix} $$ *Force Forces exerted on a system by bodies external to the system and forces exerted between bodies of the system are called "active" (or "applied") forces. Forces exerted on the system due to accelerations of its particles are called "inertia" (or "passive") forces.

表示オプション

横に並べて表示:
変化行の前後のみ表示:
記事メニュー
目安箱バナー